EXHIBIT 4—METRICS SUMMARY ENERGY, ENVIRONMENTAL, AND ECONOMIC SAVINGS NICE³

tons/day) for the <i>proposed</i> technology is
The installed unit for the <i>comparable competing</i> technology is
Energy Savings
The energy consumption for the <i>proposed</i> unit in Btu/yr/unit is
Provide a discussion with assumptions and references for the derivation of your values. (Refer to subsequent table for energy conversion)
The energy consumption for the <i>comparable competing</i> unit in Btu/yr/unit is
Provide a discussion with assumptions and references for the derivation of your values. (Refer to subsequent table for energy conversion factors)
Environmental Savings
Identify wastes other than power generation emissions for the <i>proposed</i> technology in tons/yr/unit using the <i>proposed</i> unit described above:
Waste 1 Waste 2 Waste 3
Identify wastes other than power generation emissions for the <i>comparable competing</i> technology in tons/yr/unit using the <i>comparable competing</i> technology unit described above:
Waste 1 Waste 2 Waste 3

Provide a discussion including assumptions to allow the technical reviewers to understand the derivation of the stated values.

METRICS SUMMARY (CONTINUED)

Economic Savings

Provide the economic savings for the proposed technology versus the comparable competing technology.

Define the unit cost for the proposed technology						
Define the unit cost for th	ne comparable competing technology					

Provide a discussion including assumptions to allow the technical reviewers to understand the derivation of the stated values.

METRICS SUMMARY (CONTINUED) FUEL OR ENERGY CONVERSION FACTORS

Fuel Source	BTU/Barrel	BTU/Gallon	BTU/Pound	BTU/Cubic
				<u>Foot</u>
Crude Oil	6 x 10 ⁶	142 x 10 ³	18.6 x 10 ³	1 x 10 ⁶
Fuel Oil – 6	6.2 x 10 ⁶	150 x 10 ³	17.8 x 10 ³	1.1 x 10 ⁶
Fuel Oil – 2	6 x 10 ⁶	140 x 10 ³	18.6 x 10 ³	1 x 10 ⁶
Gasoline	5.2 x 10 ⁶	126 x 10 ³	18.9 x 10 ³	940 x 10 ³
Propane – L	3.8 x 10 ⁶	92 x 10 ³	19.9 x 10 ³	690 x 10 ³
Wood			6.5 x 10 ³	148 x 10 ³
Natural Gas	87 x 10 ⁶	2 x 10 ³	21 x 10 ³	1 x 10 ³
Methane	87 x 10 ⁶	2 x 10 ³	21 x 10 ³	1 x 10 ³
Methanol	2.9 x 10 ⁶	69 x 10 ³	9.6 x 10 ³	517 x 10 ³
Ethane			20 x 10 ³	1.8 x 10 ³
Ethanol	3.7 x 10 ⁶	87 x 10 ³	12 x 10 ³	652 x 10 ³
Hydrogen			51 x 10 ³	270
CO			4.3 x 10 ³	316
Coal - Bit.			12.6 x 10 ³	800 x 10 ³
Coal - Lig.			8.6 x 10 ³	541 x 10 ³
Coal - Ant.			12.6 x 10 ³	800 x 10 ³
Carbon			14.6 x 10 ³	1.9 x 10 ⁶
Ethylene			20 x 10 ³	1,477